Syntax-Aware Neural Semantic Role Labeling

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Syntax Aware LSTM model for Semantic Role Labeling

In Semantic Role Labeling (SRL) task, the tree structured dependency relation is rich in syntax information, but it is not well handled by existing models. In this paper, we propose Syntax Aware Long Short Time Memory (SA-LSTM). The structure of SA-LSTM changes according to dependency structure of each sentence, so that SA-LSTM can model the whole tree structure of dependency relation in an arc...

متن کامل

Syntax Aware LSTM Model for Chinese Semantic Role Labeling

As for semantic role labeling (SRL) task, when it comes to utilizing parsing information, both traditional methods and recent recurrent neural network (RNN) based methods use the feature engineering way. In this paper, we propose Syntax Aware Long Short Time Memory(SALSTM). The structure of SA-LSTM modifies according to dependency parsing information in order to model parsing information direct...

متن کامل

Semantic Role Labeling using Dependency Syntax

This document gives a brief introduction to the topic of Semantic Role Labeling using Dependency Syntax. We also describe a system that has been developed and tested on a corpus from the CoNLL-20081 shared task. We evaluate the system and give a short discussion on further improvements. Our results are reasonably good compared to those reached during the shared task.

متن کامل

Context-aware Frame-Semantic Role Labeling

Frame semantic representations have been useful in several applications ranging from text-to-scene generation, to question answering and social network analysis. Predicting such representations from raw text is, however, a challenging task and corresponding models are typically only trained on a small set of sentence-level annotations. In this paper, we present a semantic role labeling system t...

متن کامل

A Simple and Accurate Syntax-Agnostic Neural Model for Dependency-based Semantic Role Labeling

We introduce a simple and accurate neural model for dependency-based semantic role labeling. Our model predicts predicate-argument dependencies relying on states of a bidirectional LSTM encoder. The semantic role labeler achieves competitive performance on English, even without any kind of syntactic information and only using local inference. However, when automatically predicted partof-speech ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the AAAI Conference on Artificial Intelligence

سال: 2019

ISSN: 2374-3468,2159-5399

DOI: 10.1609/aaai.v33i01.33017305